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ABSTRACT

RSA cryptosystem has withstand a number of cryptanalysis over the

years on its mathematical structures. The cryptanalysis provides the

users of the cryptosystem some particular cases where the RSA private

keys can be exposed hence diminishes its security elements. In this pa-

per, we discusses a general case of our previous attack on RSA primes.

Our attack corresponds to the special-structured RSA primes namely

the primes are relatively close to their nearest squared numbers. We also

count the number of primes that are vulnerable to our attack. Finally,

we present the countermeasure that can be implemented in the RSA key

generation algorithm to avoid our attack.
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1. Introduction

The growth in numbers of digital applications marked the importance of
a secure cryptosystem. It is to ensure the communications between the ap-
plications to be con�dential while maintaining its integrity. One of the main
cryptosystem in use today is RSA cryptosystem which was introduced by Rivest
et al. (1978). The cryptosystem utilizes the integer factorization problem (IFP)
as one of its security features. The hard mathematical problem depends on the
hardness of �nding the prime factors of a very large integer which in general
is still an infeasible problem since it can only be solved by factoring algorithm
in sub-exponential time(Crandall and Pomerance, 2006). However, there are
many factoring algorithms that focus on the special instances of primes. These
algorithms are able to solve the factorization of an integer in polynomial time
if the prime factors of the integer exhibit certain structures that can be ma-
nipulated mathematically. This situation consequently poses a danger on RSA
cryptosystem if no proper countermeasure is introduced. For that, FIPS (2013)
has provided a standard guideline to avoid the usage of such vulnerable primes.

In this paper, we introduce another instances of primes that can lead to a
disastrous impact on RSA. The special-structured primes in this paper can be
retrieved in a polynomial time if they are used as the RSA primes. We also
count the number of these vulnerable primes in terms of n-bit size to show that
there are possibilities for these primes to be unknowingly chosen as the RSA
primes. Finally, we present a suitable countermeasure to avoid the usage of
such primes since there is no method in the standard guideline of RSA to avoid
the primes.

1.1 RSA Cryptosystem

A brief on the workings RSA key generation algorithm is discussed in this
section. We omit the details of RSA encryption and decryption algorithms since
our attack is not related to the algorithms. First, the RSA key generation
algorithm generates two non-trivial primes of n-bit sizes, p and q to form a
parameter called RSA modulus, N where N = pq. Then, the key generation
algorithm chooses a suitable e such that gcd(e, φ(N)) = 1 where φ(N) is the
Euler's phi function of N . Then d is computed such that ed ≡ 1 (mod φ(N)).
The parameters (N, e) are called RSA public keys while (p, q, φ(N), d) are called
RSA private keys.

Our attack in this paper describes an e�ort to factor N in polynomial time.
In general, we focus on the structures of p and q. We show that if p and q are
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both having a special structure introduced in this paper, N can be factored by
the adversary in polynomial time hence exposes the private keys p and q.

1.2 Outline of This Paper

The paper is organized as follows. In Section 2, we describe some sig-
ni�cant previous works that have been the motivations and guidelines of our
result. Next, we present our attack in Section 3 and describe in Section 4 the
method to count the vulnerable primes a�ected by our attack in the previous
section. Then, in Section 5, we introduce the countermeasure to avoid using
the vulnerable primes before we conclude our paper in Section 6.

2. Previous Works

There are numbers of factoring algorithms over the years since IFP fas-
cinates mathematicians. One of the earliest algorithm of this type is called
Euler's factorization algorithm (Riesel, 2012). It depends on the statement
that the product of two sums of two squares is a sum of two squares. If there
are primes that satisfy the conditions of the statement then the product of the
primes can be factored. This work is almost similar to Fermat's factorization
method. The Fermat's method focuses on �nding the values of odd integers v
and w to factor u such that u = v2 − w2 = (v − w)(v + w) (Lehman, 1974).
While the method is sometimes less e�cient than the trial division method
which is basically the simplest strategy in factoring an integer, but the combi-
nation of both methods may work on certain instances of a composite number.
The strategy used in Fermat gives a motivation to the fastest general-purpose
factoring algorithm which is general number �eld sieve algorithm Lenstra et al.
(1993).

In another hand, there are also special-purpose factoring algorithms that
specializes on the certain instances of primes. For example, an algorithm by
Pollard (1974) can solve the factorization of a number, N which has prime
factors, p1 ·p2 · . . . ·pn in polynomial time if for i = 1, 2, . . . , n there exists pi−1
with small prime factors. That is, p − 1 can be broken completely into small
prime factors that are less than an integer, L. Another algorithm called elliptic
curve factoring algorithm was introduced by Lenstra Jr (1987). It replaces the
multiplicative group used in Pollard's p− 1 algorithm to the group of points in
a random elliptic curve.
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2.1 Our Motivation

In our previous work, we investigated the impact of using p = am + 1 and
bm + 1 where m = 2i with i = 1, 2, . . . (Ghafar et al., 2018). In the paper, we
showed that such N = pq can be factored in polynomial time by computing the

value of
(
b
√
Nc − i

)m
where i is a small integer. The work was motivated by

a result by Friedlander and Iwaniec (1997) that states there are in�nitely many
primes in the form of a2 + 1. This shows the signi�cance of our attack since
primes in this form are a�ected by our result. In this paper, we generalize the
form of p and q. Particularly, we investigate the result of using p = am + rp
and bm + rq where m = 2i with i = 1, 2, . . . and rp, rq are su�ciently small
integers.

3. The New Attack

In this section, we discuss our new attack. The next lemma shows the
equality of

√
am + r to its integer and decimal forms.

Lemma 3.1. Let a, r ∈ Z+ and m ≥ 2 be a power of 2. If
√
am + r = am/2+ ε

then ε < r
2am/2 .

Proof. Let am + r be an integer where a ∈ Z+. Then

√
am + r <

√
am +

r2

4
a−m + r =

√
(am/2 +

r

2
a−m/2)2 = am/2 +

r

2
a−m/2

Since
√
am + r = am/2 + ε then ε < r

2am/2 . This terminates the proof.

With result from Lemma 3.1, we can �nd the lower and upper bounds of
N1/2 − (ab)m/2 in the following lemma.

Lemma 3.2. Let a, b ∈ Z+ and m ≥ 2 be a power of 2 such that a < b < 2a.
Suppose N = (am + rp)(b

m + rq) where rp ≤ rq < Nγ . If rp < 2am/2 and
rq < 2bm/2 then (rprq)

1/2 < N1/2 − (ab)m/2 <
rq
2 + 2

m
2 −1rp + 1.

Proof. To prove the lower bound, �rst we need to show that amrq + bmrp >
2(ab)m/2(rprq)

1/2. Observe that(
am/2r1/2q − bm/2r1/2p

)2
= amrq + bmrp − 2(ab)m/2(rprq)

1/2.
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Since
(
am/2r

1/2
q − bm/2r1/2p

)2
will always be positive value, it implies that

amrq + bmrp > 2(ab)m/2(rprq)
1/2. Then√

(am + rp)(bm + rq) =
√
(ab)m + amrq + bmrp + rprq

>
√
(ab)m + 2(ab)m/2(rprq)1/2 + rprq

=

√(
abm/2 + (rprq)1/2

)2
= (ab)m/2 + (rprq)

1/2

Thus,
√

(am + rp)(bm + rq)− (ab)m/2 = N1/2− (ab)m/2 > (rprq)
1/2. To prove

the upper bound, since
√
am + rp = am/2 + ε1 and

√
bm + rq = bm/2 + ε2.

Then, based on Lemma 3.1,

N1/2 =
√
(am + rp)(bm + rq) =

√
(am + rp)

√
(bm + rq)

= (am/2 + ε1)(b
m/2 + ε2) = (ab)m/2 + am/2ε2 + bm/2ε1 + ε1ε2

< (ab)m/2 + am/2
rq

2bm/2
+ bm/2

rp
2am/2

+
rp

2am/2
rq

2bm/2
(1)

If rp < 2am/2 and rq < 2bm/2 then

rp
2am/2

rq
2bm/2

=
rprq

4(ab)m/2
<

4(ab)m/2

4(ab)m/2

= 1. (2)

If a < b < 2a, (1) then will become

N1/2 − (ab)m/2 < am/2
rq

2bm/2
+ bm/2

rp
2am/2

+ 1

=
(a
b

)m/2 rq
2

+

(
b

a

)m/2
rp
2

+ 1

< (1)m/2
rq
2

+ (2)
m/2 rp

2
+ 1

=
rq
2

+ 2
m
2 −1rp + 1.

This terminates the proof.

By obtaining the lower and upper bounds of N1/2− (ab)m/2 in Lemma 3.2,
we proceed with the following theorem to factor N = pq in polynomial time.
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Theorem 3.1. Let a, b ∈ Z+ and m ≥ 2 be a power of 2 such that a < b < 2a.
Suppose N = (am + rp)(b

m + rq) be a valid RSA modulus. Let rp < 2am/2 and
rq < 2bm/2 where max{rp, rq} = Nγ . If Nγ is su�ciently small then N can be
factored in polynomial time.

Proof. From Lemma 3.2 we can see that (rprq)
1/2 < N1/2 − (ab)m/2 <

rq
2 +

2
m
2 −1rp + 1. Thus,

N1/2 −
(rq
2

+ 2
m
2 −1rp + 1

)
< (ab)m/2 < N1/2 − (rprq)

1/2. (3)

Suppose rp = Nγ1 and rq = Nγ2 are known. Then the di�erence between the
upper and lower bounds of (3) will be

N1/2 − (rprq)
1/2 −N1/2 +

rq
2

+ 2
m
2 −1rp + 1

< Nγ

(
2

m
2 −1 +

1

2

)
−
(
(min{rp, rq})2

)1/2
+ 1

= Nγ

(
2

m
2 + 1

2

)
−min{rp, rq}+ 1

which is the size for set of numbers to �nd (ab)m/2. If Nγ is su�ciently small,

then we can �nd (ab)m/2 in polynomial time. By computing
(
(ab)m/2

)2
, we

�nd (ab)m. Next, we can see that

N − rprq ≡ (am + rp)(b
m + rq)− rprq

≡ (ab)m + amrq + bmrp

≡ amrq + bmrp (mod (ab)m)

By �nding the roots of the following quadratic equation

X2 − (amrq + bmrp)X + ((ab)mrprq),

we �nd x1 = amrq and x2 = bmrp. Since rp and rq are known, we can can
obtain

am =
x1
rq

and bm =
x2
rp
.

Thus we can factor N by calculating

N

bm + rq
= am + rp.
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Remark 3.1. Throughout this paper, we use the term `su�ciently small' to
indicate the size of numbers that are computationally feasible to be brute-forced
by current computing machine. This is related to a suggestion from NIST in
2010 that a key space with less than 280 elements may be feasible to be brute-
forced by the computing machine in the nearest future (Barker et al., 2012).
Hence an integer space with less than 280 is to be su�ciently small in our case.

The algorithm to factor N = pq via Theorem 3.1 is as follows:

Algorithm 1 Factoring N = pq = (am + rp)(b
m + rq) via Theorem 3.1

Require: N, rp, rq,m
Ensure: p, q
1: Set i =

⌈
(rprq)

1/2
⌉
.

2: while i <
⌊ rq

2 + 2
m
2 −1rp + 1

⌋
do

3: Set σ =
([√

N
]
− i
)2

4: Calculate z ≡ N − rprq (mod σ)
5: Solve X2 − zX + σrprq = 0
6: Set x1 = X1 and x2 = X2

7: if N
x1
rq

+rp
or N

x2
rp

+rq
6= integer then

8: i++
9: else

10: end if

11: end while

12: Output p = x1 and q = x2

The following is an example to illustrate Algorithm 1.

Example 3.1. We use RSA-2048 modulus in this example. Speci�cally, we
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are given

N = 1939133831924806606133876996976871687068609653763060909324448

8668514800635826815744380480577064007971365134666183669601095

8155783481842790728153408479119399762603861278141593483588318

0658196006836190128581789804020622061036339071154358680942063

2565404189405055681272917936676120931081002832888478823820373

5947313379284127719468283019386285632933463059274409471301888

9766975429020483124452679885746781484566076595100007926035076

9676930032535503214291431427677073662668575112732211044822652

0386299044393468981751535180261474975851491597630344397435627

0516781664462941952717473384070030332692688081483434497701485

3137639.

If rp = 900535 and rq = 801217 are known, then we set

i =
⌈
(rprq)

1/2
⌉

= 849426.

Then we calculate

σ =
([√

N
]
− i
)2

and z ≡ N − (rprq) (mod σ) (4)

and solve the equation

x1,2 = X2 − zX + σrprq = 0 (5)

We �nd that neither x1

rq
+ rp nor x2

rp
+ rq are integers. This means x1 and x2

are not our �nal solutions. It also means σ 6= (ab)m at this point. To �nd
the correct σ, we continue to search for them by iterating equations (4) and
(5) using iterated values of i. This search can be done in polynomial time as i
should be less than

rq
2 + 2

m
2 −1rp + 1 = 1301144 as stated in Lemma 3.2. That

means operations in (4) and (5) must be repeated at most 1301144−849426+1 =
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451719 times. In this case, when i = 851797 (2371st iteration), we �nd

σ =
([√

N
]
− i
)2

= 1939133831924806606133876996976871687068609653763060909324448

8668514800635826815744380480577064007971365134666183669601095

8155783481842790728153408479119399762603861278141593483588318

0658196006836190128581789804020622061036339071154358680942063

2565404189405055681272917936676120931081002832888478823820136

3644226247359509479622750206627815044709366516531058654173197

4604923352225424730353329032249086913623919353764524727298560

5591555129796787303628030327922665738872798367891162749149287

8610056969597136857386365933544863559028289824946864269961727

7275323735121074694484308390477519869370362474253549976365912

5809936

and

z = N − (rprq) (mod σ)

= 2372303087131924618239845532812758470588224096542743350817128

6915162052076795058394099350853497694570942157241335483198736

5164085374902738715910663401099754407923795776744841048295673

3641776242074796332124365169246716611416823201772683480127473

8993241457929341867258233164993592510463322325607229884521263

4203376608

produces

N
x1

rq
+ rp

= 13700386761479536402226136058449627163320996243973232147

33434571249622914952137540384698192037021610302105168487

87964345485387738830063329770436775997607191136323419341

78978105273604821452801636627889076570287685089046421945

59321229911297610484313176711855558800328066662776370116

43622625530512124168946150939
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which is an integer and

N
x2

rp
+ rq

= 14153861972546204716991607515293408672586498379096795090

45234715633813327222483363462306688824357868992092397689

36782644059806867509531431679202497456095447203331524817

99603351626050627890990413314169820141621929500991751698

98966830625839073322513143453891474436200004141038009977

91940162343931070147127595301

which is also an integer. Hence, N has been successfully factored in polynomial
time.

Remark 3.2. Observe that N in Example 3.1 does not exhibit any noticeable
structures (such as long adjacent 0's or 1's) in its value. As such, users of
RSA have a possibility to have generated such RSA modulus. Thus, Algorithm
1 is valuable for RSA users to preempt usage of such RSA modulus.

4. The Number of Vulnerable Primes to the

New Attack

In this section, we calculate the number of primes having the structures as
discussed in Section 3. First, we determine the number of squared numbers
that share the same bit size.

Lemma 4.1. If n is any large positive integer then there are at least
⌊
2

n
2

(
1− 2−

1
2

)⌋
squared numbers between 2n−1 and 2n − 1.

Proof. Let X = {x2i }ki=1 be the set of all squared numbers between 2n−1 and
2n − 1. Particularly,

2n−1 < x2i < 2n − 1.

Then

2
1
2 (n−1) < xi < (2n − 1)

1
2 ⇒ 2

1
2 (n−1) < xi <

((
2

n
2 − 1

) (
2

n
2 + 1

)) 1
2 . (6)

Next, compute the di�erence between the upper bound and the lower bound
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of (6) in integer form. That is,⌊((
2

n
2 − 1

) (
2

n
2 + 1

)) 1
2 − 2

1
2 (n−1)

⌋
>

⌊((
2

n
2 − 1

) (
2

n
2 − 1

)) 1
2 − 2

1
2 (n−1)

⌋
=

⌊((
2

n
2 − 1

)2) 1
2 − 2

1
2 (n−1)

⌋
=

⌊
2

n
2 − 1− 2

1
2 (n−1)

⌋
.

=
⌊
2

n
2

(
1− 2−

1
2

)
− 1
⌋
.

If n is any large positive integer then⌊
2

n
2

(
1− 2−

1
2

)
− 1
⌋
≈
⌊
2

n
2

(
1− 2−

1
2

)⌋
.

This terminates the proof.

Theorem 4.1. Let π(x) be the prime-counting function that gives the number
of primes less than or equal to x, for any real number x. Then

π(x) ∼ x

log x
.

Proof. See (Jameson, 2003)

With the results from Lemma 4.1, we can determine the number of weak
primes that are a�ected by our attack.

Theorem 4.2. Let a, b, rp, rq be integers greater > 0. Let m be a power of
2. Suppose rp < 2am/2 and rq < 2bm/2 where max{rp, rq} = Nγ . Let x > 0
be an integer where x2 is the smallest squared number with n-bit size then the
numbers of primes a�ected by our attack, π2(x) is asymptotic to

π2(x) ∼

⌊
2

n
2

(
1− 2−

1
2

)⌋
2

 Nγ

log (x)2
+

Nγ

log
(
x+

⌊
2

n
2

(
1− 2−

1
2

)⌋)2
 .

Proof. First, we recall Prime Number Theorem in Theorem 4.1 that states for
any real number x, π(x) is asymptotic to

π(x) ∼ x

log x
.
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Using this value, given two real numbers x0 and x1 where x0 < x1 < 2x0, we
can count the number of primes between the two numbers. That is,

x1
log x1

− x0
log x0

≈ x1
log x0

− x0
log x0

=
x1 − x0
log x0

.
(7)

Let x > 0 be an integer where x2 is the smallest squared number with n-
bit. Let π1(x) be the prime-counting function between x

2 and x2+max{rp, rq}.
Similar to (7),

π1(x) =
x2 +max{rp, rq}

log (x2 +max{rp, rq})
− x2

log x2
≈ x2 +max{rp, rq}

log x2
− x2

log x2

=
x2 +max{rp, rq} − x2

log x2
=

max{rp, rq}
log x2

=
Nγ

log x2
.

From Lemma 4.1, we know there are approximately
⌊
2

n
2

(
1− 2−

1
2

)⌋
squared

numbers with n-bit size where n is a large integer suitably used in RSA. Thus,
π1(x) for the consecutive squared numbers are as follows:

π1(x) =
Nγ

log (x)2

π1(x+ 1) =
Nγ

log (x+ 1)2

π1(x+ 2) =
Nγ

log (x+ 2)2

...

...

π1

(
x+

⌊
2

n
2

(
1− 2−

1
2

)⌋)
=

Nγ

log
(
x+

⌊
2

n
2

(
1− 2−

1
2

)⌋)2 .

(8)

The summation of (8) can be represented in the sum of arithmetic progression
formula where the number of i terms is multiplied by the sum of the �rst and
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last number in the progression and dividing by 2. That is,

π2 =

⌊
2

n
2

(
1−2−

1
2

)
−1
⌋∑

i=0

Nγ

log (x+ i)
2

=

⌊
2

n
2

(
1− 2−

1
2

)⌋
2

(
π1(x) + π1

(
x+

⌊
2

n
2

(
1− 2−

1
2

)⌋))
=

⌊
2

n
2

(
1− 2−

1
2

)⌋
2

 Nγ

log (x)2
+

Nγ

log
(
x+

⌊
2

n
2

(
1− 2−

1
2

)⌋)2
 (9)

This terminates the proof.

The following is an example to illustrate the result from Theorem 4.2.

Example 4.1. In this example we proceed to compute the number of primes
used in RSA-2048 that are vulnerable to our attack. From Theorem 4.2, we
need to compute⌊

2
n
2

(
1− 2−

1
2

)⌋
2

 Nγ

log (x)2
+

Nγ

log
(
x+

⌊
2

n
2

(
1− 2−

1
2

)⌋)2
 .

Following Example 3.1, we have n = 1024 and max{rp, rq} = N0.009661... which

implies γ = 0.009661. Observe that x = 2n−
1
2 since x2 is the smallest squared

number with n-bit size. Substituting these values into (9), we obtain

π2(x) ∼

⌊
2

n
2

(
1− 2−

1
2

)⌋
2

 Nγ

log (x)2
+

Nγ

log
(
x+

⌊
2

n
2

(
1− 2−

1
2

)⌋)2


≈ 7.0265327 . . .× 10153. (10)

Thus, there are approximately 7.0265327 . . .× 10153 primes that are susceptible
to our attack if RSA-2048 is used.

5. Countermeasure of the Attack

In this section, we present a countermeasure to prevent using the vulnerable
primes discussed in Section 3. The countermeasure is depicted in Figure 1.
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Given N, p and q, if ⌈
N1/2 −

⌊
p1/2

⌋
·
⌊
q1/2

⌋⌋
(11)

is a su�ciently small integer, then RSA key generation algorithm must
�nd new p or q.

Figure 1: Countermeasure of the attacks shown in Section 3.

Since the computation is minimal, the prevention of the attack can be ap-
plied in the real-world RSA implementation.

6. Conclusion

Our new method can successfully factor N in polynomial time given that it
satis�es certain conditions as in Theorem 3.1. We also show in Theorem 4.2 that
the number of primes which are susceptible to our attack is large and depends
on the size of p and q. Our attack includes primes that can be generated by
current standard RSA implementation namely RSA-2048 as in Example 3.1.
Thus, a new countermeasure should be introduced to the existing guidelines in
preventing such attack to occur.
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